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Abstract-A variational principle is formulated for radiant heat transfer through the void spaces and 
conduction in the solid, of an arbitrary void-solid system with diffusely reelecting surfaces. Variational 
upper bounds on the effective conductivity of a void-solid suspension are expressed in terms of certain 
averages characterizing the random geometry. A radiation conductivity upper bound, calculated for a 
model porous medium generated by randomly placed. overlapping spheres, is compared with well-known 
results from kinetic theory and radiant heat transport. The va~atio~l principle provides a means to obtain 
useful estimates and upper bounds on the thermal radiation conductivity, that include multiple and 

anisotropic diffusive scattering in a bed of large particles. 

INfRODUCTlON 

RADIATION heat transport through the open spaces of 
a void-solid system is generally irn~~nt either at 
high temperatures [t] or at low pressures [2]. J3eek [3] 
and Argo and Smith [4] have included radiant heat 
transport in an analysis of the radial heat transport 
within a packed bed heat exchanger or chemical re- 
actor. Whitaker [S] using volume averaging has 
obtained an equation for the heat flux through a 
diffusely reflecting, opaque solid-void system, which 
when linear&d in the temperature gradient and evalu- 
ated for an isotropic, thick bed, consists of a direct 
sum of solid conduction and void radiation terms. 
Beek [3] has pointed out that there is at present no 
experimental basis for including the surface emissivity 
or assigning the length variable in the expression for 
the thermal radiation conductivity. Vortmeyer [6] has 
reviewed the various structural models f7-1 I] for radi- 
ation transport in packed solid, and in this context 
stated that the long range effects of scattering from a 
void region to nearby void regions have not been 
included in any theory of radiation transport. A rig- 
orous scattering theory will permit both a derivation 
of the bed surface emissivity dependence, and proper 
transport path length variable for the void radiation 
conductivity. 

In this paper, equations for rhe radiation heat trans- 
port through the open spaces of a void-solid sus- 
pension of arbitrary geometry with simultaneous 
thermal conduction in the solid is formulated. The 
solid is opaque with gray emitting and diffusive 
reflecting surfaces. Any particle dimensions are pre- 
sumed to be much larger than the wavelength of the 

t Author to whom correspondence should be addressed. 

thermal radiation. A complete solution of the radi- 
ation heat transfer problem for complex bed geo- 
metries, e.g. fluidized or packed beds, is hampered 
in practice both by the difficulty of the equations, and 
often also by an incomplete knowledge of the void- 
solid structure. A variational upper bound on the 
effective bed conductivity and the void radiation con- 
ductivity is derived for an arbitrary void-solid 
geometry. The variational conductivity expression is 
applied to randomly dispersed solids and written 
in terms of appropriate statistical functions of the 
structure. 

As it does for the simpler tlat plat problems, the 
radiosity formulation of diffusive scattering deveIoped 
in the paper avoids the sum over successive multiple 
surface scatterings, but now for arbitrary solid 
surfaces. If instead of the radiosity, the equations were 
cast only in terms of the temperature, the radiant 
thermal conductivity expression becomes an infinite 
sum over termsj = 0, 1,2,. . . . Each term contains the 
surface emissivity product E’( I - t$; a product of view 
factors, one view factor every straight line segment of 
the path the photons travel, diffusely scattered at j 
successive surface collisions between emission and 
absorption; and a surface temperature dependence. 
Then in addition, this combination is integrated over 
all possible paths. This type of expanded form of the 
radiant conductivity was obtained by Whitaker [SJ as 
a formal result, though no calculations were per- 
formed for explicit model structures. A variational 
principle can be written that parallels Whitaker’s 
result, however, because of the difficult necessary inte- 
grations over the complex paths and the j summation, 
it is a formidable task to evaluate. The radiosity 
approach avoids these difficulties. 

An illustration is presented using straightforward 
trial functions, a linear temperature profile across the 
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c 
d 
d2r 
d3r 

d2q 
d’p 
G 

absorption coefficient 
defined in equation (9b) 
radiosity and trial radiosity 
radiosity of the planes at x = L and 0, 
respectively 
defined in equation (SC) 
sphere diameter 
element of surface 
element of volume 
element of solid angle 
element of volume in equation (3 1) 
energy flux of gas molecules from 
surface 

f(~,~,g’)d~pd*~d*+ probability that two 
points on the void-solid interface, 
which can see one another, have a 
relative position vector p within d3p, a 
surface unit normal g within d*q at 
the first point, and a surface unit normal 
$ within d2q’ at the second point 

H radiant flux incident on a unit surface 
i unit vector pointing from x = 0 to L 

J, J net heat flux across plane per unit total 
cross sectional area 

k Boltzmann constant 
K(r, r') d2r’ fraction of radiation leaving a 

unit surface element at r that travels a 
straight line path and arrives at the 
surface element d2r’ at r’ 
slab width 
average pore diameter 
molecular number density 
probability that volume v is free of 
sphere centers 
sphere radius 
absorption and scattering efficiencies 
position vectors 
exposed sphere area per unit total 
volume 
temperature and trial temperature 
average surface tem~rature at x = L 
and 0, respectively 
average slab temperature 

~(9) d”q probability that a point on the 
surface has a surface unit normal q 
within d’v 

V total slab volume 

K solid volume 

Vb void volume 
5 thermal speed 
X slab width coordinate. 

Creek symbols 
thermal energy accommodation 
coefficient 
defined by equation (21) 
heat capacity ratio 
variational functional 
variations in radiosity and temperature 

(T- i”) 
surface emissivity 
volume density of sphere centers 
unit surface normal pointing into the 
void 
defined by equation (2 1) 
extinction coefficient 
solid conductivity 
effective conductivity 
void radiation conductivity 
thermal radiation wavelength 
defined in equation (34) 
volume 
surface area that can be seen from a 
typical point on the void-solid 
interface 
vector pointing from r and r’ 
Stefan-Boltzmann constant 
scattering coefficient 
void-solid interface 
planar solid surfaces located at x = L 
and 0, respectively 
void fraction 
rate of molecules striking a unit surface 
per unit time 
adjustable parameter in equation (24). 

bed with a corresponding trial radiosity, and a simple the surfaces of the spheres are black. the variational 
statistical model for the porous medium, randomly radiation conductivity is shown to coincide with the 
placed, overIapping solid spheres. An explicit ex- well-known, exact gray gas result [12] for isotropic 
pression for the thermal radiation conductivity in emission from black spheres. In the opposite limit 
terms of the void fraction, solid surface area per unit of no absorption, the variational result reduces to 
volume and sphere surface emissivity is obtained. Derjaguin’s coefficient [ 13,141 from the kinetic theory 
Though an upper bound for any void fraction and of gases, which is also known to be an exact solution, 
emissivity, a physical significance is placed on the but for anisotropic scattering in a dilute sphere bed. 
variational form for the case of a dilute bed of spheres. At other emissivities the variational radiant con- 
In the context of such an explicit structure the issue ductivity is compared with iinear anisotropic scat- 
of isotropic vs anisotropic scattering arises. When tering theory [15]. For the proper selection of the 
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FIG. 1. Randomly overlapping solid spheres. 

phase function constant, the linear anisotropic scat- 
tering and the va~ational radiant conductivity ex- 
pressions are the same. The selected value of the 
phase function constant implies a very strong aniso- 
tropic backscatter. The radiant conductivity expres- 
sion is a rigorous upper bound for any emissivity, 
that reduces to the exact physicai forms in both the 
extremes E = 0 and I, and these features suggest 
that it might be useful as an estimate of the radiant 
conductivity for a dilute sphere bed. For the identical 
problem of Knudsen void gas conduction dilute 
sphere bed kinetic theory results [l&17] again estab- 
lish that the variational conductivity is an exact solu- 
tion in the limits of thermal a~ommodation co- 
efficients of zero and unity. The variational prin- 
ciple provides a means to obtain useful estimates and 
upper bounds on the thermal radiation conductivity, 
that rigorously include both multiple and anisotropic 
diffusive scattering in a bed of large particles. 

FUNDAMENTAL EQUAflONS 

Suppose just outside the ends of a large porous slab 
(Fig. 1) of total volume V, solid plane surfaces Z0 and 
Et are positioned at x = 0 and ,!., respectively, and 
that i is a unit vector pointing across the slab in the 
positive x-direction. The total volume V is divided 
into two subregions, a region of soiid V, and a void 
region V,. The interface I: between these two regions 
makes up the void-solid interface. We assume Z,, EC, 
and & are opaque gray surfaces, the radiation of 
which is emitted and reflected diffusely according to 
Lamberts’ cosine law 1121. The emitted gux depends 
on the absolute temperature T of the surface, the 
surface emissivity E and the Stefan-Boltzmann con- 
stant Q, in the combination .wT4. KirchhotT’s law 
states that the same surface element will absorb only 
a fraction E of the incident radiation, reflecting the 

fraction (1 -a). If H represents the radiant flux inci- 
dent on a unit surface, then for a diffusely reflecting 
surface the radiosity B, the radiation diffusely leaving 
a unit surface, is given by 

B = eaT4+(1 --E)H (r on E). (9 

The fraction K(r’, r)d*r of radiation diffusely dis- 
tributed, from a unit surface element located at r’, 
that travels a straight line free path, and anives at a 
second surface element d*r located at r, can be used 
to formufate the radiant exchange between surfaces. 
Since we are assuming diffuse scattering at the sur- 
faces, K is given by the cosine law 

K(r’, r) = K(r, r’) Pa) 

= -k(r) - f4M’) * Al/ (W 

(if r’ can see r) 

= 0 (otherwise). (2c) 

where q(r) and B(r’) are unit normals respectively at 
the points r and r’ on the surfaces C,,. Z and CL, 
pointing into the void, and p = (r’-r). Of the diffuse 
radiation B(r) d’r’ Ieaving d*r’ of X0, Z and EL, only 
the fraction Bfr’) d’r’ K(r’, r) will arrive within a unit 
area at r on X, then the total incident radiant flux at 
ronCis 

i 
K(r’, r)B(r’) d’r’ = H(r) (r on Z). (3) 

*+z+z, 

When the total incident flux H from equation (1) is 
substituted into equation (3), and the radiosity B is 
subtracted from both sides, an integral equation in 
terms of the radiosity and temperature is obtained 

i 
K(r’, r) [B(f) - B(r)] d’r’ 

*tZ+ZL 

= &[B(r)-cT4(r)] (r on Z). (4) 

Note from its definition as a probability, and the 
s~rnet~ property (2a), that the function K(r’, r) d2r’ 
will sum to unity over the surfaces E,,, E and EL. 

The steady state energy balance at a point r within 
the solid V,, and Fourier’s law with solid conductivity 
A, give 

‘(7. (XT) = 0 (r in V,). 6) 

The thermal boundary condition equating the net 
radiative flux from the void-solid surface I: at r to the 
normal flux from the solid 

--A~.~T=B-H (ronx.) (6) 

or from equation (1) in terms of the radiosity and 
temperature 

E.q*VT= $&[/3(r)-aT4(r)] (r on Z). (7) 

Equations (4), (5) and (7), together with the steady 
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surface conditions that the radiosity is assigned to be 
uniform at 

and 

B(r) = B. (r on Z,) @a) 

B(r) = B, (r on X,) (W 

are in principle su~~ient to determine B and T. In 
practice the complex geometry of the surface Z and 
solid volume V, prevent an outright solution. 

To calculate the effective conductivity and the 
thermal radiation conductivity the fundamental equa- 
tions must be linearized in the temperature. Steady, 
average surface temperatures T, and TL, respectively, 
of the edge surfaces Zp and CL, and an average slab 
temperature t = (To+ T,)/2 are defined. The Iinear- 
ization presumes the temperature variation across 
the slab is small compared with the average slab tem- 
perature T, i.e. AT/j; [= (T-T)/T] is small. We 
retain in equations (4), (5) and (7) only terms zeroth 
and first order in the temperature variation about F. 
As a consequence in both equations (4) and (7), aT4 
can be replaced by 

where 

aT4 = A+CT (94 

and 

A= -3aT4 (9’4 

C = 4aT’. (9c) 

Also as a result of the linearization any temperature 
dependence of A or E can be negIected and the con- 
stants in equations (4), (5) and (7), evaluated at the 
average slab temperature. Equations (4), (7) and (9at_. 
(SC) are linear in temperature, and are the starting 
point of the variational analysis. Since the effective 
and thermal radiation conductivities do not depend 
explicitly on the temperature drop across the slab, no 
loss in the generality of the conductivity equations 
occurs when the problem is linearized. However, a 
direct application of the linearized equations and vari- 
ational principie to obtain local temperature and radi- 
ation fluxes should be restricted to moderate tem- 
perature differences across the slab 1181. 

In the context of low pressure cryogenic insulation, 
Barron [21 has pointed out the equivalence of Knudsen 
gas heat conduction and diffusely reflecting radiation 
for energy transport between parallel plates with uni- 
form temperatures. It is interesting to note for the 
linearized forms (4), (5), (7) and (9), this equivalence 
extends to arbitrary solid geometries with complex 
surface temperature profiles, and thermal gradients in 
the solid. In low pressure, cryogenic insulation, the 
variable $ = n5/4, where n is the particle number 
density and 5 the thermal speed, is a constant [I91 
in the absence of effusive flow. The equations for 
Knudsen gas conduction are obtained from equations 
(4), (5), (7) and (9), when for Z,+C t-C, we let B = E, 
represent the energy leaving the surface diffusely 

(now not of photons, but of Knudsen gas molecules), 
replace the emissivity E by the thermal energy accom- 
modation coefficient z introduced by Knudsen [20], 
set A = 0 and write 2C = k$(;r+ I),‘(y- 1) in terms of 
the Boltzmann constant k and heat capacity ratio :j. 
A complete mathematical equivalence exists through 
to the final results. Linearization is not an issue in the 
Knudsen void gas thermal conductivity problem. 

VARIATIONAt FORMULATION 

In this section we will derive a variational upper 
bound on the total heat flux, the net rate heat passes 
through both the void and solid per unit total cross 
section of a slab with arbitrary pore geometry. The 
net heat flux J across the plane at s = 0 is just the 
difference of the flux in minus the flux out 

J= (f&V)-‘L 
s I 

d’r d’r’ K(r. r’)B, 
10 X+X, 

x 1% - B(r’)l ( IO) 

where Y is the total volume of the slab and B0 and BL 
are the radiosity values on ;C, and Z,, respectively. 
The Rux into the sIab at s = L is derived by a simifar 
procedure. This flux can be obtained from equation 
(10) by interchanging the 0 and L subscripts; however, 
this gives the negative of J. Combining these two 
equations we find 

-J.fi= y-’ 
1 s 

d’r d’r’ K(r, r’@(r) 
x,+x, ,tz+x, 

x1&r)-Nr’)f (II) 

where 

/I = (B, - Bo)L- ‘i. (12) 

The upper bound on the heat flux is based on the 
variational functional 

x[B*(r)-A-CT*]*tC 
s 

d’ri.[VT*]* (13) 
B’. 

where the trial temperature T* must be continuous 
and at least piecewise continuously differentiable in 
V,, and the trial radiosity B* must satisfy 

B*(r) = 
BO (ran W 
BL (r on Z,). 

(14) 

The volume element d’r is summed over the solid 
volume Y,. To show that the term 6f from equation 
(13), first order in the respective variations SB, 6T of 
the trial functions about B, T. vanishes we write 
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+A d3r[B(r)-A-CT(r)][GB(r)-CGT(r)] 
Jl 

+C 
s 

d3r dVT*V(iG’). (IS) 
v* 

Upon interchange of the integration variables r, r’ and 
application of the symmetry condition (2a) of K in the 
6B(r’) term of the first integral of equation (IS), and 
integration by parts followed by the divergence 
theorem in the third integral, the first-order expression 
X becomes 

d’r’ GB(r)K(r, r’) 

d2r’ 6B(r) 
,+x+z, 

x [B(r)- A-CT(r)]- 

x[B(r)-A-CT(r)]+C d2r6T(r)q*dVT(r) 

-C J “, d3r~~(r)V*~~V~(r)]. fW 
As any trial radiosity must satisfy boundary con- 
ditions (8a) and (8b) 

SB(r) = 0 on Z0 and XL (17) 

the first integral in equation (16) is zero. The second 
and third integrals together vanish due to equation 
(4) with equation (9a), the fourth and fifth terms com- 
bine to cancel from equation (7) with equation (9a), 
and the last term in equation (16) is zero by equation 
(5). From the interpretation of K as a probability, the 
integrals of equation (13) are clearly positive and the 
second-order term in the variation of r is also positive, 
hence 

QB, Tf Q r{B*, P). (18) 

To relate T{B, T) to the heat flux J, the ext~mum 
form of equation (I 3) is rewritten, again using prop- 
erty (2a) of K, integration by parts, and the divergence 
theorem, much in the same manner as in the derivation 
of equation (16) 

x Bt WW - 4r31 + I-_E d2r B(r) 

x [B(r) - A - CWI --f- d2rA , _ E 
l 

x[Bfr)-A-CT(r)]-k 

x [B(r)- A-CT(r)]+C d*r r(r)q(r) 

*NT(r)-C J d3r T(r)V.[AVT(r)]. (1% “, 
The first integral in ET{& Tf is identical to expression 
(11) for - P’J * j?, the second and third integrals vanish 
from equations (4) and (9a), and the fifth and sixth 
integrals combine to zero from equations (7) and (9a). 
Upon substitution of equations (7) and (9a) into the 
fourth integral in equation (19) we note as there are 
no heat sinks or sources within the solid V, the fourth 
term sums over the void-solid interface to zero, and 
the last integral in equation (19) is zero from equation 
(5). The variational upper bound on the heat flux is 

-J./l = i-f& 7’) Q r{B*, T*j. (20) 

With the same substitutions applied to equations (4), 
(5), (7) and (9), i.e. E, for B, a for E, A = 0, and 
2C = k$(y+ 1)/(7- I), the radiation variational prin- 
ciple becomes a variational upper bound on the con- 
ductive thermal flux through a Knudsen void gas- 
dispersed solid system. Then an exact kinetic theory 
solution of the Knudsen void gas heat transport prob- 
lem in a void-solid system is also a solution of the 
radiation transport problem. 

TRIAL FUNCTIONS AND BED STATlSTiCS 

The evaluation of the integrals in the upper bound 
(13) is conside~b~y simp~ifi~ if we pass to the limit 
of a very long slab (let L become large compared to 
typical bed dimensions, e.g. particle size and average 
pore diameter). Due to the angular distribution of 
the radiation diffusely emitted from Z0 and XL, and 
blocking by the solid, radiation from the edges will 
penetrate only an infinitesimal distance across the slab 
before striking a surface. The contributions to the 
upper bound integrals of equation (i 3) from the end 
surfaces C,, and ZL go to zero as L-‘. In a thick slab 
the radiation heat conductivity should not depend on 
the nature of the end surfaces. The end conditions in 
a thick slab are discussed briefly in the Appendix, 
where it is shown that the radiosity difference 
(B,-B,j can be replaced by the black body emission 
difference a(Tt-To*). Then with the linearization 
about the average slab temperature, ~3 from equations 
(12) and (9a) becomes 

#? = C(T,-T,)L-‘i = ce (21) 
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with C given by equation (SC). For a thick slab the 
effective thermal conductivity i, = ]J/0], from equa- 
tions (13), (20) and (21), is bounded above by the 
variational principle 

x(B*(r’)-B*(r)]‘+;& d’r 
s r 

x[B*(r)-A -CT*(r)]‘+ g d3rI[VT*(r)12. (22) 
i v, 

A simple selection for the trial temperature is 

T*(r) = TO+O*r 

and for the trial radiosity 

(23) 

B*(r) = A+CT*+w6-q(r) (24) 

where o is an adjustable parameter and q(r) the sur- 
face unit normal at r on C pointing into the void. 
The linear part of equation (24) allows for a smooth 
variation across the bed, while the third term in B* 
fluctuates (due to 6.t~) with the random local structure 
of the void-solid interface C. 

We assume the void-solid bed is statistically homo- 
geneous and isotropic, define the void fraction 4, the 
void-solid interface area s per unit total volume, and 
an average pore diameter m, which is four times the 
void volume to void-solid interfacial area. In addition 
we define the mean surface area 5 that can be seen 
(i.e. reached by an unobstructed straight line) from 
a typical point on the void-solid interface, and the 
probability u(q) d’q that a point on the surface ;I: has 
a surface unit normal TV pointing into the void and 
falling within the element of solid angle d*q. Finally 
the probabilityf(p, PJ. q’) d’p d2rJ d’q’, that two points 
on the void-solid interface ): which can see one 
another, have a relative position vector lying in the 
volume element d3p about p, and that the unit normal 
g falls within d$ at the first point on C and within the 
solid angle element d’l’ about IJ’ at the second, is 
defined. For a statistically homogeneous, isotropic 
void-solid bed the upper bound (22), with trial func- 
tions (23) and (24), and the form (2b) of K, can be 
expressed in terms of the five statistical quantities 
given above 

+ &s d*q u(tJ)[wfJ*s]*+ C(1 --4)ie2. (25) 
I 

To determine the quantities I( and f we must either 
make appropriate measurements in the void-solid sys- 
tem or generate a model material. One simple model 

for a pore structure (Fig. I) is obtained when Vi 
spheres all of the same radius q are placed randomly 
in a volume V and allowed to freely overlap one 
another. All those points lying on a sphere surface but 
not on the interior of an overlapping sphere make up 
the pore wall surface Z; all those points within the 
interior of one or more spheres make up the solid 
volume Vs. The randomly overlapping sphere model 
has been discussed elsewhere [14,21]. It suffices to 
point out that the probability P, that a volume v is 
free of sphere centers is 

P, = exp (-vi). (26) 

That a point be in the void requires sphere centers be 
excluded from a spherical volume of radius q about 
the point and the probability of finding a point in the 
void is just the porosity 

4 = exp ( -4nq3i/3). (27) 

The total sphere area, overlapped or not, per unit 
total volume is 4nq2[, and the exposed (not over- 
lapped) sphere area per unit total volume is 

s = 4nqy+. (28) 

The average pore diameter (four times void volume 
to void-surface interface area) is 

m = 4$/s = (nq2[)- ‘. (29) 

If we consider a point on the exposed surface, all 
values of TV are equally likely and the probability 

u(q) d*rJ = d’tJ/4a. (30) 

For two points exposed or overlapped lying on differ- 
ent spheres all values of p, r~ and TV’ are equally likely 
and the probability of falling within the specified 
infinitesimals d’p, d*v and d*$ is 

d’p d2rJ d’$ 
---. 

v 411 4n 

The probability f(p, 1, q’) d’p d’q d’q’ also requires 
the event that the two points are exposed and can see 
one another, i.e. the probability that no third sphere 
has its center within a right circular cylinder about 
p = r'-r capped at both ends with a hemisphere of 
radius q. Using equation (26) for the probability that 
sphere centers are excluded from this volume 

SV d3p d’q d’g’ 
f(p,‘~,t~‘)d~pd’$d’t/‘=~--- 

Q#J- v 4K 4n 

xexp[-pnq2<-4rcq3</3] (31) 

if p * q 2 0 and p * tj G 0, and is zero otherwise. Nor- 
malization offthen leads to 

< = 1287+/s’. (32) 
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RESULTS AND OISCUSSION 

When the probability functions (27)-(31) for a 

random bed of overlapping solid spheres are sub- 
stituted into inequality (25) and the integrals are 
evaluated, an upper bound on the effective thermal 
conductivity is obtained 

& +mc 1I 1 -2+;g2+$-fi2 +(I-#)& 
1 

(33) 

The right-hand side of inequality (33) is minimized 
when 

w 6(1-g) 
x-=1 

’ mC 9+4(1-c) (34) 

and the best effective conductivity upper bound for 
trial functions of the type (23) and (24) is 

For situations in which all other energy exchange 
mechanisms, such as conduction, are negligible com- 
pared to radiation, Siegel and Howell 1121 introduce 
the important case of thermal radiative equilibrium. 
For radiative void heat transport C (= 4ar3) is given 
by equation (%) and E is the sphere surface emissivity 
evaluated at T. For thermal radiative equilibrium the 
solid conduction term in inequality (35) is neglected, 
and the variational result (35) gives a rigorous upper 
bound on the thermal radiation conductivity 1, 

The temperature trial function (23) when combined 
with equations (7) and (9a) generates the trial radi- 
osity (24). Hence the variational expressions (35) and 
(36), for the effective and thermal radiation con- 
ductivities, are obtained from the linear temperature 
trial function. When a random two-phase suspension 
consists of two Fourier solids, the upper bound vari- 
ational principle with a linear trial temperature (23) 
of the type used here gives the parallel bound j22J. It 
is interesting to note that inequality (35) is also a 
parallel bound, if we take the square bracketed quan- 
tity in expression (36) to be the void thermal radiation 
conductivity. 

To interpret the physical significance of the vari- 
ational expression (36) for the thermal radiation con- 
ductivity three cases are examined-a dilute bed of 
black spheres (r# + 1, E -, 1), a dilute bed of totally 
reflecting spheres (d, -, 1, E -t 0), and linear aniso- 
tropic scattering. The thermal radiation conductivity 
upper bound (36), written for the dilute bed (4 -+ 1) 
black sphere (6 + 1) limit, and expressed in terms of 
the sphere density C and sphere radius q from equation 
(29) for the average pore diameter m, has the form 

The absorption coefficient u can also be expressed in 
terms of [ and q 

a = nq’CQ,_ (38) 

Tien and Drolen [23] have pointed out that the absorp- 
tion efficiency Q, for large particles can be set equal 
to the particle emissivity, which for black spheres is 
unity. The variational result (37) for a dilute bed of 
black spheres can be written in terms of the absorption 
coefficient (38) 

j., Q 160~~/(3u), (4 + 1, E 4 1) (39) 

and we obtain the well-known, rigorous form [12] 
of the thermal radiation conductivity for isotropic 
emission with no scattering. A single sphere. though 
large compared to the characteristic wavelength of 
thermal radiation 1,. (nd/ty > lOO), is still much 
smaller than the slab thickness L, and for the imposed 
temperature gradient 8 across the slab, its temperature 
is very nearly uniform. If in addition, the sphere sur- 
face is black with no scattering, the radiosity is con- 
stant across its surface, the sphere does indeed emit 
isotropically, and equations (37) and (39) must be 
exact equalities. Note also that the optimized p from 
(34) should be, and in fact is, zero for E = 1. i.e. the 
scattering contribution does vanish in the optimized 
trial radiosity (21) on a black surface. 

The thermal radiation conductivity upper bound 
(36) for a dilute bed (4 + 1) of totally reflecting 
spheres (E --* 0) 

E., $ 48aYf3m/13, (c$ -t 1,s -* 0) (40) 

is also a rigorous equality. Tien and Drolen [23] have 
pointed out, that there is a complete equivalence 
between Knudsen diffusion of a gas in a porous or 
packed solid and radiant heat transport with diffusive 
totally reflecting walls (8 + 0), in the case of thermal 
radiative equilibrium. Abbasi and Evans [24] have 
used this equivalence in Monte Carlo simulations of 
radiant heat transport in packed beds and porous 
solids. In the context of Knudsen diffusion, Dejaguin 
[13] has proposed (40) as an equality, and Strieder 
and Prager [14] have shown that the right-hand side 
of (40) does approach the true transport coefficient, 
but only in the limit of a very dilute bed of spheres. 
There is always a local anisotropy for diffusive reflec- 
tion off large spheres @d/l, > loo), determined by the 
orientation of the sphere surface elements. As the 
‘average’ photon approaches in the direction of the net 
flux, impacts, and scatters diffusely from the sphere 
surface, there are always some forward directions 
rendered inaccessible by the presence of the solid 
sphere; Derjaguin’s coefficient (40) includes signifi- 
cant anisotropic backscatter. 

Tien and Drolen [23] have stated that the semi- 
isotropic scattering, two-flux model is not an accurate 
approximation for the highly anisotropic scattering 
from the large particles considered here. For the same 
reasons, except near E = 1, the isotropic scattering 
radiant thermal conductivity 1121 should not work 
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very well either, but it is an upper bound as we shall 
show. The choice, fi = 0, in inequality (33) is legi- 
timate for any sphere emissivity, if in addition we 
consider a dilute sphere bed (4 + I) with thermal 
radiative equilibrium, inequality (33) for p = 0 
becomes 

A, d 16aT3/(3nq2[) (41) 

where C (= 4aS3) was given by equation (SC), and 
the average pore diameter was written in terms of the 
sphere density [ and sphere radius q by equation (29). 
Tien and Drolen [23] have noted that the scattering 
efficiency Q, for large particles can be taken as 
(I -Q.), and the scattering coefficient 6, 

oo = w’iQs = w2CU - Qa>. (42) 

The extinction coefficient K is by definition the sum of 
the absorption and scattering coefficients, then from 
equations (38) and (42) 

K = U+CJ, = ?tq’[ (43) 

and with equation (43) the inequality (41) becomes 

I., < 16ai’+‘/31c. (44) 

The isotropic scattering case [12] is an upper bound 
on the thermal radiant conductivity for a dilute bed 
of diffusely scattering spheres. An optimized, non- 
zero selection of 1 in inequality (33) will give aniso- 
tropic results. 

The variational result (36) can be related to the 
simple linear anisotropic scattering approximation 
[15]. For a dilute sphere bed (4 + I), and with 
(nq'i)- ’ in place of the average sphere diameter m 
from equation (29), the variational upper bound (36) 
has the form 

i, < 48at3/[9+4(l -c)]nq2[ (45) 

then including the extinction coefficient from equation 

(43) 

i, ,< 48&‘/[9+4( 1 -&)]K. (46) 

For an optically thick slab of large spherical particles 
(xd/E., > 100) and using the linear anisotropic scat- 
tering approximation, Dayan and Tien (equation (27) 
of ref. [ 151) have derived the approximate equality 

1, = 16#/[3-~(1 -&)]K, (L.A.S.). (47) 

In equation (47), we have replaced Dayan and Tien’s 
single scattering albedo w,, with its straightforward 
emissivity dependence [23] of (I -E). For the simple 
linear anisotropic scattering approximation the phase 
function has been approximated by unity, plus a cor- 
rection term linear in the cosine of the scattering angle. 
The coefficient I of the cosine term must be assigned 
a value. For 4 + 1 and E + 1, i,, from equation (47) 
already coincides with the exact result (39). As Derja- 
guin’s coefficient is exact in the limit 4 -+ 1, E -, 0, we 
can require equation (47) in this limit to coincide with 
inequality (40), and this sets a value of z at 

z = -413. (48) 

Dayan and Tien [ 151 note that z --) I represents strong 
forward scattering, while z + - I implies strong back- 
ward scattering. Strictly speaking the absolute value 
of z should be less than or equal to one to avoid 
negative values of the phase function, but Dayan and 
Tien [ 151 observe because of the approximate nature 
of the linear phase function, that the absolute value 
of z in many cases exceeds unity. In addition to very 
strong anisotropic backscattering, the variational 
upper bound result (46) establishes the simple linear 
anisotropic scattering approximation result (47) with 
z = -4/3 is a rigorous upper bound on the thermal 
radiation conductivity, that reduces to the exact physi- 
cal forms in both of the extremes, E = 0 and 1. These 
features suggest that inequality (46) might be useful 
as an estimate of the radiant conductivity. 

As the void fraction is decreased from unity the bed 
of randomly placed, freely overlapping solid spheres 
resembles less a gray gas, and becomes more a packed 
solid or porous medium. Van Kreveld and Van den 
Hoed [25] have successfully used randomly overlapping 
spheres to model silica gels. Overlapping spheres 
should be appropriate as a model for sintered ceramic 
materials prepared by high temperature synthesis 
reactions [26]. To handle radiation in these structures, 
it would have been necessary to use one of the packed 
bed void thermal radiation conductivity equations 
from the literature [6-111. Unfortunately, none of 
these void thermal radiation conductivity equations 
correctly include multiple scattering [6] from void to 
adjacent void regions. In the most appropriate model, 
Wakao and Kato [S] performed radiation transport 
calculations across the close packed layers of an 
orthorhombic lattice. Wakao and Kato treated the 
open areas between unit cells incorrectly. with the same 
emissivity and reflection laws as the solid sphere 
surface. As a result, Wakao and Kato’s radiant ther- 
mal conductivity equation gives very poor results for 
surface emissivities much less than unity, and incor- 
rectly vanishes as E goes to zero. On the other hand, 
the variational equations apply for any void fraction 
and surface emissivity, and have the added advantage 
of properly including multiple scattering events from 
void to adjacent void regions within the void thermal 
radiation conductivity expression (square bracketed 
term in inequality (36)). 

With the substitution of r for E and 2C = 8crP-’ = 
/+(;I+ I)/(!- I). the variational upper bound ex- 
pression (36) applies for void gas, Knudsen heat trans- 
port 

j.,, d 4 
6mW(y+ IMY- 1) 1 9+4(1-a) . (49) 

Lassettre [ 16, 171 has formulated rigorous Boltzmann 
type equations to predict Knudsen gas transport rates 
through a dilute bed of solid spheres (#- I). In par- 
ticular in the limits of no accommodation (a -+ 0) 
and perfect accommodation (a -+ 1). Lassettre has 

, 
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obtained exact solutions that apply to Knudsen void 
gas heat transport rates, and that coincide with 
inequality (49) in both limits. Then for Knudsen void 
gas transport in the limits (r& + 1, a + I) and (4 + 1, 
a + 0) the variational result is an exact equality, 
elsewhere it is an upper bound. 

SUMMARY AND CONCLUSIONS 

A variational upper bound principle has been for- 
mulated for the effective thermal conductivity and 
thermal radiation conductivity for a void-solid system 
with diffusely emitting and scattering surfaces. The 
equations are based on a radiosity formulation and 
rigorously include the effects of successive multiple 
scatterings down the bed. General forms of the vari- 
ational expressions have been written in terms of 
appropriate probability functions for a random void- 
solid bed. 

Explicit results have been calculated for a linear 
temperature trial function over a slab of randomly 
placed, freely overlapping solid spheres all of the same 
radius. In the context of such an explicit structure the 
issue arises of isotropic vs anisotropic scattering. The 
variational upper bound expression (36) for the ther- 
mal radiation conductivity for a dilute sphere bed 
(4 + 1) of black spheres (E + 1) has been shown to 
coincide with the well-known, exact gray gas result 
(121 for isotropic emission from the spheres. In the 
opposite limit of a dilute bed of spheres (4 + 1) with 
no absorption (E -, 0), the variational result has been 
shown to reduce to Derjaguin’s coefficient [13,14], 
which is also known to be the exact solution for aniso- 
tropic scattering in a dilute totally reflecting sphere 
bed. Arguments were presented to demonstrate that 
the isotropic scattering form (44) is an upper bound 
on the radiant conductivity for any emissivity, though 
a good estimate only near E = 1, Also for emissivities 
from zero to unity, the variational radiant con- 
ductivity (46) has been compared with linear aniso- 
tropic scattering theory [IS]. For the proper selection 
of the phase function constant, the linear anisotropic 
scattering and the variational radiant conductivity 
expressions are the same. The selected value of the 
phase function constant implies a very strong aniso- 
tropic backscatter. The linear anisotropic scattering- 
variational radiation conductivity (46) is a rigorous 
upper bound, that reduces to the exact forms in both 
the limits E = 0 and 1. This second upper bound (46) is 
a significant improvement over the previous isotropic 
bound (44) e.g. reduced by 31% for E = 0. These 
features suggest that inequality (46) might be useful 
as an estimate of the radiant conductivity. For the 
identical problem of Knudsen void gas conduction, 
dilute sphere kinetic theory results [16,17] establish 
that the variational void conductivity is an exact solu- 
tion in both the limits of no accommodation and 
perfect accommodation at the spherical particle 
surface. The variational principle provides a means 
to obtain useful estimates and upper bounds on the 

thermal radiation conductivity, that rigorously 
includes both multiple and anisotropic scattering in a 
bed of large spheres. 

Improvement of the variational upper bound 
should, of course, be possible, but the calculations 
involved increase rapidly with increasing sophis- 
tication of the trial function, even if we restrict our- 
selves to the case of randomly overlapping spheres. 
Efforts to improve the trial function will include a 
superposition [22] of the local heat fluxes around 
(insulating) or through (conducting) each of the dis- 
persed solid particles. This trial function will take into 
account the fact that different spheres have different 
surroundings, and will provide the proper physical 
basis [27] to study the interaction of solid and void 
radiation modes of heat transport. 
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APPENDIX 

In engineering models for thermal conduction, she thermal 
energy flux J per unit total cross sectional area of a void- 
solid system is customarily related to the overall gradient 
(TL- r,,)/L across a slab with 

J= -&(I/_-z-,)/f.. (Ai) 

On a physical basis we presume, because the slab is thick, 
that the effective conductivity i, does not depend on slab 
thickness L. If the conductivity in the solid -Iq*VT is 
replaced by the thermal flux J, equation (7) can be written 
for the edge plates Z, and C,_, respectively 

& = &-( i --E&/E” (A2) 

and 

& = ~";+(I-E~)J/E~. (A31 

Equation (A2) is subtracted from equation (A3), the result- 
ing equation is linearized in AT/t and (Al) is substituted 
for the thermal flux, to give 

&--B, =40f'(T,-T,)-{(1-EL)/EL 

+(I-&,,!&,li.,(r,-r,)/L. (A4) 

The second term on the right-hand side of equation (A4). 
of order L-‘. can be neglected when L is large, and from 
equations (12) and (9~) for a thick slab 

/3 = C(T,-- r&/f.+,. (A5) 

CONDUCTIVITE ET ~YONN~ME~ POUR UN MILIEU VIDE-SOLIDE AVEC DES 
SURFACES REFLECHISSANTES 

R&urn&-Un principe variationnel est form& pour le transfert radiatif P travers les espaces vides et la 
conduction dans le solide. le systemme vide-solide &ant arbitraire et pos&dant des surfaces B rkflexion 
diffuse. Les Iimites sup&ieures variationnelies de la conductivi3 effective d’une suspension vide-solide sont 
exprimies en fonction de certaines moyennes qui caracttrisent la geometric due au hasard. Une limite 
sup&ieure de la conductivit& calculCe pour un milieu poreux constitui de spheres placCes au hasard, est 
comparte avec des r&hats bien connus de la theotie cinktique et du transfert de chaleur par rayonnement. 
Le principe variationnel fournit un moyen pour obtenir des estimations utiles et des limites sup&rieures de 
la conductivi3 thermique qui incluent la dispersion diffusive anisotrope dans un lit de grosses particules. 

STRAHLUNGSTRANSPORT IN EINEM BELIEBIGEN PORC)SEN MEDIUM MIT DIFFUS 
REFL~KTIERENDEN OBERFL~CHEN 

Zusammenfassung-Fiir die Strahlungswlrmeiibertragung durch den Hohlraum und gleichteitige W&me- 
leitung im Festkiirper eines beliebigen Hohlraum/Festkiirper-Systems mit diffus reflektierenden Ober- 
R&hen wird ein Variationsprinzip formuliert. Die variablen Obergrenzen der effektiven W%meIeitf%higkeit 
der Suspension werden durch geeignete Mitte~werte ausgedriickt, welche die zut3Ilige Geometrie charak- 
terisieren. Die Obergrenze der Strahlungsw~~e~~rtm~ng in einem poriisen Medium mit zuI?illig plazierten 
iiberlappenden Kugeln wird mit bekannten Ergebnissen aus der kinetischen Theorie und der Theorie der 
Wiirmestrahlung verglichen. Das Variationsprinzip erweist sich als niitzliches Werkzeug, urn Ab- 
schltzungen und Obergrenzen fiir den WSrmetransport durch WTrmestrahlung bei mehrfacher und 

anisotrop diffuser Streuung in einer Schiittung groi3er Partikel zu erhalten. 

PAAMAUMOHHkR TEIMOIIPOBOJJHOCTb B TBEPAOM TEJIE CO CJIYriAtiHO 
PACnPE&EJIEHHbIMM IIYCTOTAMM I-IPM &H@U’Y3HO OTPAXCAIGIIIMX 

IIOBEFXI?OCF%X 

Am~o~am~-Cc$wp~yn~poea~ sapHawiowd3 UpmmUn arm paaHauHoHHor0 TermonepeHoca nepe:, 
nyffo~bl H TeUnonpoaotutocM B Taepnom Tene co cnyvalHauu pacUpencnenHcm nycror c nw@$)nno 
OTpaXa~UtHMH I’tOBepXHOCTSMH. Bepx~an rpanHua ~ennonpo~on~ocr~ ra*ol cxres+M ebfpaxekta 
repe3 t3exoTopbze cpexinie 3mweHss~, xapas3eptqioutHe ~q~~~ pacnpencneane. BepxHrui rpaHUua 
paaHaUHOHHOT0 TeMOUepCHOCa, paccriHTaHHOr0 WtA MOReJlbHOfi UOpHCTOIi CpeAbi, &p~OEGiHHO@ XaO- 
niwc~H pacnonoxeHiibrMH nepexpbtaalouurhoccn *paMH, cpanmmarrcx c H’JBeCTHbnMH pe3ynbTaTaMw 
~3 rrnHmluecro9 reopmi H panwawonHor0 tennonepexoca. BapHiWIOHH&4fi npHHwn UCnonb3yercn 
nnn UonyqeeHn none3~blx 0UeHox H B~~XHHX rpaHHu panUauHoinror0 TennonepeHoca, ax.mOqan hmo- 

rOKpaTH‘% H aWH30TponHOe 2&+,‘3HW ~CeeKHHe B CnOe K&%,‘nHXX SaCTHU. 


